Homework Set 5

(sect 2.3-2.5)

1. Determine if the following matrix is invertible. Use as few calculations as possible.
$\left[\begin{array}{ccc}11 & 1 & 0 \\ 7 & 3 & 0 \\ 4 & -2 & 0\end{array}\right]$
2. Can a square matrix with two identical columns or with two identical rows be invertible? Why or why not?
3. If the columns of a 10×10 matrix A are linearly independent, what do you know about the solution set of $A \boldsymbol{x}=\boldsymbol{b}$? Why?
4. Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{l}4 x_{1}-5 x_{2} \\ 7 x_{1}+3 x_{2}\end{array}\right]$. Show that T is invertible, and find a formula for the inverse transformation T^{-1}
5. You want to compute $A \cdot B$

$$
A=\left[\begin{array}{cc:ccc}
1 & -1 & -2 & -3 & 0 \\
1 & 0 & 5 & 3 & 2 \\
5 & 3 & 1 & 0 & 4
\end{array}\right] \quad B=\left[\begin{array}{cccc}
3 & 0 & 1 & -1 \\
-2 & 1 & 0 & 0 \\
0 & 5 & -3 & 3 \\
9 & 2 & 0 & 4 \\
3 & 0 & -1 & 0
\end{array}\right]
$$

a. A partition for A is given. Give a partition for B such that A and B can be multiplied together as block matrices. (draw your partition on matrix B above)
b. Compute $A \cdot B$ using submatrices.
6. a. Show that $A^{2}=I$ where $A=\left[\begin{array}{cc}1 & 0 \\ 3 & -1\end{array}\right]$
b. Use partitions to make M a block matrix in order to show that $M^{2}=I$ where

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
3 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & -3 & 1
\end{array}\right]
$$

c. Use the idea of part (a), to construct a 5×5 matrix $M=\left[\begin{array}{ll}A & 0 \\ C & D\end{array}\right]$ such that $M^{2}=I$. Make C a nonzero 2×3 matrix. Show that your construction works by computing M^{2}.
7. Verify that the given L and U give the $L U$ factorization of the matrix A.

$$
A=\left[\begin{array}{cccc}
1 & -2 & 4 & 5 \\
5 & -6 & 21 & 29 \\
-2 & 8 & -9 & -4 \\
3 & -10 & 3 & 16
\end{array}\right], \quad L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
5 & 1 & 0 & 0 \\
-2 & 1 & 1 & 0 \\
3 & -1 & 4 & 1
\end{array}\right] \text {, and } U=\left[\begin{array}{cccc}
1 & -2 & 4 & 5 \\
0 & 4 & 1 & 4 \\
0 & 0 & -2 & 2 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

8. Find the LU factorization of the given matrix A

$$
A=\left[\begin{array}{ccccc}
2 & 7 & -5 & 2 & 1 \\
2 & 10 & -7 & 5 & 5 \\
-2 & 2 & 6 & 8 & 16 \\
4 & 14 & 4 & 6 & 11
\end{array}\right]
$$

9. Solve the equation $A \boldsymbol{x}=\boldsymbol{b}$ by using LU factorization.

$$
A=\left[\begin{array}{ccc}
3 & -4 & 2 \\
3 & -2 & 1 \\
15 & -16 & 15
\end{array}\right] \text {, and } \boldsymbol{b}=\left[\begin{array}{c}
1 \\
2 \\
14
\end{array}\right]
$$

10. Solve the equation $A \boldsymbol{x}=\boldsymbol{b}$ by using LU factorization. (hint: let $\ell_{54}=0$)

$$
A=\left[\begin{array}{ccc}
4 & -5 & 6 \\
8 & -7 & 16 \\
20 & 5 & 83 \\
4 & 1 & 79 \\
-8 & 7 & 23
\end{array}\right] \text {, and } \boldsymbol{b}=\left[\begin{array}{c}
-14 \\
-22 \\
-10 \\
-2 \\
22
\end{array}\right]
$$

